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Abstract—Millimeter wave (mmWave) communication systems
employ hybrid RF/baseband transceivers that divide the spatial
signal processing into radio frequency and baseband domains
in order to reduce the hardware complexity resulting from the
use of large number of antennas elements. In this paper, we
consider two designs for hybrid multi-user MIMO downlink that
minimizes the sum mean square error (SMSE), based on perfect
channel knowledge (non-robust design) and transceiver design
considering the channel imperfections (robust design). In the
robust design, the channel state information (CSI) is assumed
to be perturbed by estimation error and follows Gaussian
distribution with known error variance. In both the designs, re-
duced hardware complexity is achieved by analog-digital hybrid
processing by using orthogonal matching pursuit (OMP)-based
sparse signal processing. We evaluate the performance of both the
proposed schemes based on various parameters and also compare
it with conventional fully-digital system. We present numerical
results over various dictionaries. The comparison results show
that robust design is resilient to the presence of CSI errors.
Furthermore, we also demonstrate the convergence of both the
proposed algorithms to a limit even though global convergence is
hard to prove due to non convex nature of overall optimization
problem.

I. INTRODUCTION

With the ever-increasing data traffic, currently available

spectrum for commercial wireless systems is depleting at

a tremendous rate. Hence, a need for increase in available

spectrum arises for future cellular communication. Millimeter

wave (mmWave) frequency band (3-300 GHz) offers a huge

unlicensed spectrum supporting multigigabit-per-second data

rate and is becoming the point of interest amongst researchers

for next generation communication [1]. Due to smaller wave-

length at mmWave frequencies, large number of antennas

can be packed into very small units that enables higher

beamforming and spatial multiplexing gains, making MIMO

a key technique for system design. However, due to high cost

and power consumption of RF chains at these frequencies,

the conventional fully-digital design with dedicated RF chain

for each antenna element become impractical [2], [3]. Thus

there arises a need for reduction in hardware complexity while
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designing mmWave system. As a result, mmWave system

employs hybrid analog-digital processing in which the en-

tire precoding operation is decomposed into an analog RF

beamformer and a digital baseband processor. The single-

user hybrid precoding in mmWave system has been studied

in [4], [5]. Hybrid precoding using sparse approximation for

point to point communication is reported in [6]. In [7], hybrid

processing using orthogonal matching pursuit (OMP)-based

sparse technique is presented for a mmWave interference chan-

nel. OMP is a well known signal processing method and has

been extensively studied in literature. In OMP-based hybrid

precoding algorithm, RF beamforming vectors are selected

from dictionaries using MMSE criterion and corresponding

baseband filter is obtained as a least-squares solution [8].

In this paper, we first propose a non-robust hybrid

transceiver design for multi-user MIMO downlink mmWave

system. More specifically, we assume that both the base station

(BS) and user equipments (UE’s) have multiple antennas with

total number of RF chains less than total number of antennas.

We propose to jointly design the hybrid precoder and receive

filters. In literature, the joint transceiver designs have been

well investigated for conventional fully-digital MIMO system

[9]. In this paper, we formulate a joint optimization problem

minimizing SMSE constrained on total transmit power at BS.

Due to the non-convex nature of formulated problem, global

convergence is not guaranteed but we show that the proposed

algorithm converges to a limit and obtain the near optimal

solution. Later, we apply OMP-based sparse approximation

to obtain the low complexity hybrid design. We design this

system by considering the availability of perfect CSI. However,

various factors like feedback delays, quantization errors, etc.,

can introduce errors in CSI degrading the performance of the

system. Effects of imperfect CSI on the performance of MIMO

system is discussed in [10]. This motivates us to extend our

design to a robust case where we design a transceiver that

is resilient to CSI errors. We compare the proposed designs

with each other and also with a conventional fully-digital

system over different parameters and numerical results are

discussed in later sections. The rest of the paper is organized as

follows. Sec. II describes the system model. The proposed low

complexity designs are discussed in Sec. III. Sec. IV presents

the simulation results. Finally, conclusion is given in Sec. V.978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



Notations: Throughout this paper, we use bold-faced lowercase

letters to denote column vectors and bold-faced uppercase

letters to denote matrices. X and X implies that the variable X

corresponds to the baseband and RF block respectively. tr(·),
E{·}, ‖ · ‖0 and ‖ · ‖F denotes the trace operator, expectation

operator, 0-norm and Frobenius-norm respectively.

II. SYSTEM MODEL

We consider a multi-user MIMO downlink mmWave system

as shown in Fig. 1. Let dk be the data intended for the

kth user with Nsk parallel data streams. Thus, the total data

transmitted by BS is given as d = [dT
1 d

T
2 ..d

T
K ]

T
. It is

assumed that the BS is equipped with nTx transmit antennas

and each user equipment (UE) has nRx receive antennas.

To reduce the hardware complexity, the BS and UE’s are

equipped with hybrid precoders and combiners respectively.

Let N t×Nsk matrix Vk denotes the digital baseband precoder

and nTx × N t matrix Vk denotes the RF beamformer for

the kth user, where N t is the number of RF chains, with

Nsk ≤ N t < nTx. Received signal yk at kth UE is

passed through an RF beamfomer denoted by Nr × nRx
matrix Rk followed by a baseband combiner denoted by the

Nsk × Nr matrix Rk, where Nr is th RF chains such that,

Nsk ≤ Nr < nRx Let Vo
k and Ro

k denote the optimal

precoder and receive filter for the kth user in the conventional

MIMO system i.e., when, number of RF chains are aimed to

be equal to the total number of antennas. Then, we design

the hybrid filters to satisfy Vo
k = VkVk and Ro

k = RH
k R

H

k .

Thus the signal estimated by any user k is given by,

d̂k = Ro
k

(
Ck

K∑

i=1

Vo
idi + nk

)
, (1)

where, Ck is channel estimate available at the kth user and nk

is the additive white Gaussian noise at the receivers i.e., nk ∈
C

nRx x 1 with nk ∼ CN (0, σ2
InRx) for k = 1, 2, · · · ,K.

Due to high free-space pathloss and the use of large tightly-

packed antenna at mmWave frequencies, a 2D narrowband

parametric clustered channel model is adopted. We consider

extended Saleh-Valenzuela model [11], in which the channel

matrix Ck, from BS to kth UE can be characterized as follows,

Ck=γ

Ncl∑

m=1

Nray∑

n=1

αmnar
(
φr
mn, θ

r
mn

)
at
(
φt
mn, θ

t
mn

)
, (2)

where, Nray is the number of rays in Ncl clusters and, the

normalization factor γ =
√

nTxnRx
NclNray

is such that it satisfies

E
[
||Ck||2F

]
= nTx× nRx. αmn denotes the complex gain of

nth ray in mth cluster and is assumed to be i.i.d. and complex

Gaussian random variables with zero mean and variance σ2
α

∼ N (0, σ2
α). at

(
φt
mn, θ

t
mn

)
and ar

(
φr
mn, θ

r
mn

)
are the array

response vectors at the transmitter and receiver respectively,

and φt
mn, θ

t
mn and φr

mn, θ
r.
mn are azimuthal and elevation angle

for transmit and receive antennas respectively, where,

a
(
φmn, θmn

)
=

1√
nTx

[
expιm× 2π

λ
d(sin(φ))

]T
. (3)

We assume the transmitters possess only imperfect knowledge

of the channel state, thus, the actual CSI can be modeled as,

Fig. 1. Hybrid K-user MIMO Downlink mmWave Communication System.

C = Ĉ+∆, (4)

where Ĉ is the estimated CSI and ∆ ∼ N (0, σ2
E) denote the

corresponding error in the CSI.

III. LOW-COMPLEXITY HYBRID TRANSCEIVER DESIGNS

FOR MMWAVE SYSTEM

In this section, we present designs of two multi-user MIMO

downlink mmWave systems which differ in the knowledge of

available CSI. For both the designs, we first obtain the optimal

(fully-digital) precoding matrices {V o
k }, {k = 1, 2..,K} at BS

and receive filter matrices {Ro
k}, {k = 1, 2..,K} for all UE’s.

We further decompose these optimal matrices into hybrid

analog-digital processors that consist of reduced number of RF

chains by incorporating OMP-based sparse signal processing

technique into the design.

A. Non-Robust Transceiver Design for mmWave System

Non-Robust transceivers for mmWave system are designed

by assuming that the channel is perfectly known to BS and

UEs. We initially obtain optimal precoder and receiver filter

matrices by formulating a joint optimization problem that

minimizes the SMSE under the constraint of total transmit

power at the BS. Thus, following the system architecture in

Fig. 1, and assuming perfect CSI, SMSE can be given as,

MSEk = E{‖d̂k − dk‖
2}

= E

[
tr

(
RkĈk

( K∑

i=1

ViV
H
i

)
Ĉ

H
k R

H
k + σ

2
nRkR

H
k −

V
H
k Ĉ

H
k R

H
k −RkĈkVk + I

)]
. (5)

Thus, the joint transceiver design problem is formulated as,

min
{Vk},{Rk}

K∑

k=1

MSEk, subject to: tr(

K∑

k=1

VH
k Vk) ≤ P, (6)

where, P is the upper limit on the total transmit power at

the BS. This optimization problem can be solved using the

Karush-Kuhn-Tucker conditions to be satisfied by the optimal

solution. The Lagrangian associated with the optimization

problem can be expressed as,

L(Vk;Rk;λ)=

K∑

k=1

MSEk + λ

[ K∑

k=1

tr(VH
k Vk)− P

]
, (7)

where, λ is the Lagrangian variable. It can be observed that



TABLE I

Iterative algorithm computing Vo and Ro for power optimization

1. Initialize n = 0, Vk(0) ∀k ∈ {1, ..K}.
2. Update Rk(n+ 1) using Vk(n),

3. Solve for λk:

Vk(λ̃) =
[∑K

i=1
ĈH

i RH
i (n+ 1)Ri(n+ 1)Ĉi + λ̃I+

ασ2
E
tr
(
RH

k
(n+ 1)Rk(n+ 1)

)
I
]−1

ĈH
k
Rk(n+ 1)H ,

λ(n+ 1) =
[
{λ̃| such that tr

(∑K
k=1

Vk(λ̃)
HVk(λ̃)

)
= P}

]

+
.

4. Update Vk(n+ 1) using Rk(n+ 1) and λk(n+ 1),
5. Repeat 2,3,4 until convergence.

Non-Robust System : α = 0;

Robust System: α = 1.

SMSE function is not jointly convex in the optimization

variables, but it is convex in {Vk} for fixed values of {Rk}
and vice versa. Based on this, we obtain the solution by

the coordinate descent method, wherein the minimization is

performed w.r.t. one variable while keeping the other variables

fixed. Thus, the optimal values for Vo
k and Ro

k, {k = 1, 2..,K}
are obtained iteratively. Considering the minimization w.r.t. Vk

while keeping Rk fixed, we set,

∂L

∂VH
k

=
( K∑

i=1

ĈH
i RH

i RiĈi + λI
)
Vk − ĈH

k RH
k = 0.

Solving, we obtain the optimal precoder matrices Vk as,

Vk =
( K∑

i=1

ĈH
i RH

i RiĈi + λI
)−1

CH
k RH

k . (8)

Similarly, minimizing Lagrangian in (7) with respect to Rk

while keeping Vk fixed, we get,

∂L

∂RH
k

= RkĈk

( K∑

i=1

ViV
H
i

)
ĈH

k RH
k + σ2

nRk −VH
k ĈH

k ,

thus, the optimal receive filter matrix Rk can be given as,

Rk = VH
k ĈH

k

(
Ĉk

( K∑

i=1

ViV
H
i

)
ĈH

k + σ2
nI

)−1

. (9)

From the expression for optimal precoder and receive filter

in (8) and (9), as both are interdependent on each other, we

obtain the values iteratively. The detailed iterative algorithm

for obtaining the optimal values is discussed in Table I. Since

the objective decreases with each iteration, and it is lower-

bounded, the objective tends to limit as the number of iteration

increases. Thus, even though the global convergence is not

guaranteed, it is observed that SMSE is monotonically dimin-

ishing with each iteration. Result showing the convergence of

the algorithm is discussed in section IV. Once we obtain the

optimal transceiver matrices, we introduce hybrid architecture

by decomposing these optimal filters into digital baseband and

analog RF beamforming matrices. We achieve this by using

the OMP-based sparse approximation technique. The details

of this hybrid design are discussed later in section III-C.

B. Robust Transceiver Design for mmWave System

In order to mitigate the effect of CSI errors, we propose

a robust transceiver design by considering the CSI errors in

the channel, assuming that these errors are stochastically dis-

tributed Gaussian random variables with known error variance.

Let the CSI error variance be σ2
E . Thus, the channel for the

robust transceiver design can be given by (4). Hence, the

SMSE for robust transceiver design can be given as,

MSEk = E{‖d̂k − dk‖
2},

= E

[
tr

(
Rk

(
Ĉk +∆

)( K∑

i=1

ViV
H
i

)(
Ĉk +∆

)H
R

H
k +

σ
2
nRkR

H
k −V

H
k

(
Ĉk +∆

)H
R

H
k −Rk

(
Ĉk +∆

)
Vk + I

)]
,

= tr

(
RkĈk

( K∑

i=1

ViV
H
i

)
Ĉ

H
k R

H
k − (RkĈkVk +V

H
k Ĉ

H
k R

H
k )

+σ
2
nRkR

H
k + I

)
+ σ

2
E

( K∑

i=1

tr(ViV
H
i )

)
tr(RH

k Rk). (10)

Following the similar approach as in previous subsection, and

solving for {Vk} and {Rk}, we get the expressions for robust

optimal precoder and receive filter matrices as,

Vk=
[ K∑

i=1

ĈH
i RH

i RiĈi + λkI+ σ2
Etr

(
RH

k Rk

)
I
]−1

ĈH
k R

H
k ,

(11)

and,

Rk=VH
k ĈH

k

(
Ĉk

K∑

i=1

(ViV
H
i )ĈH

k +σ2
nI+σ2

E

K∑

i=1

(ViV
H
i )

)−1
.

(12)

By incorporating the errors in the overall design problem

and minimizing the modified problem, we obtain the robust

filters that are resilient to erroneous CSI. However, we adopt

the similar approach as in the non-robust design to obtain

transceiver matrices as given in Table I. Again, we decompose

this optimal design to a hybrid design by using OMP sparse

signal processing technique discussed in following subsection.

C. Hybrid OMP-Based Precoding/Receive Filter Design

We obtain the decomposed hybrid RF/baseband matrices

by using Orthogonal Matching Pursuit (OMP) sparse approx-

imation technique. OMP is a greedy algorithm that constructs

the sparse approximation through an iterative process. At each

iteration, the residue is reduced, which starts out being equal to

the full complexity optimal matrices, by appropriately select-

ing the column vectors from the predefined set of dictionaries.

OMP is a well known signal processing algorithm, and has

been extensively studied in literature for various applications

[8], [12]. To obtain the decomposed matrices, for the given

optimal matrices in (8), (9) and (11), (12); we select the RF

beamforming vectors from dictionary that is most strongly

correlated to the residue computed at each iteration and obtain

the baseband matrices by solving the least square problem.

Thus, we can obtain decomposed non-robust precoding and

receive filter matrices by decomposing (8) and (11), whereas,

robust matrices can be obtained by applying OMP on (9)

and (12). Moreover, same algorithm is used to obtain hybrid

precoders and hybrid receive filters for both the designs.

Thus, by decomposing appropriate optimal receive filters, the

optimal receive filter matrix can be rewritten as,

Ro
k = Γyk

Γ−1
yksk

, (13)



TABLE II

OMP-based iterative algorithm for robust MSE optimization

Require Po
k
,Φ,SBF

1: Qk = [ ]
2: A0 = Po

k
3: for i = 1 to N do
4: Ψi−1 = (ΦSBF )H(ΦAi−1)
5: l = arg maxm=1...M (Ψi−1Ψ

H
i−1

)m,m

6: Qk = [Qk|Φ(:, k)]

7: Q
k
= (Q

H

k Qk)
−1

Q
H

k Po
k

8: Ai =
Po

k−QkQk

‖Po
k
−QkQk

‖
F

9: end for

10: Q =
√
Ns

Q

‖QQH‖
F

, when ζ = 1

11: return Q,Q

Precoder: N = Nt,P
o = Vo,Φ = Γ

1

2

yr
k
, ζ = 1,

Q = V, and Q = V

Receive filter: N = Nr,P
o = RoH ,Φ = Γ

1

2
yk

, ζ = 0, ,

Q = R, and Q = R

where Γyk
= E[yky

H
k ] and Γykdk

= E[ykd
H
k ]. The baseband

receive filter matrix can be written as,

Ro
k = Γ−1

zk
Γzkdk

= (R
H

k Γyk
Rk)

−1
R

H

k Γykdk
, (14)

where Γzk
= E[zky

H
k ] and Γzkdk

= E[zkd
H
k ]. RF beamform-

ing matrix can be formulated as,

R
o

k = argmin
Rk

E‖dk −Ro
k
H
Rk‖

2
, (15)

which can be rewritten as,

R
o

k = argmin
R

o

k

‖Γ
1

2

yk
Ro

k − Γ
1

2

yk
RkR

o
k‖

2

F . (16)

Introducing dictionary SBF , the optimization problem for a

sparse receive filter can be rephrased as,

R̃
o

k=argmin
R̃k

‖Γ
1

2

yk
Ro

k − Γ
1

2

yk
SBF R̃

o

k‖
2

F , (17)

s.t. ‖diag (R̃
o

kR̃
o

k

H
)‖0 = Nr.

Similarly, the optimization problem for designing sparse pre-

coder matrix can be written as,

V
o

k=argmin
Vk

‖Γ
1

2

yr
k
Vo

k − Γ
1

2

yr
k
VkV

o
k‖

2

F
, (18)

and with the introduced dictionary,

V
o

k=argmin
Ṽk

‖Γ
1

2

yr
k
Vo

k − Γ
1

2

yr
k
SBF Ṽ

o
k‖

2

F
, (19)

s.t. ‖diag (Ṽ
o

kṼ
o

k

H
)‖0 = N t and ‖Ṽk‖

2

F = ‖Vo
k‖2F .

To solve this optimization problem, the RF beamforming

matrix is selected from the set of candidate vectors SBF .

At each iteration, the effective residue is updated, hence,

minimizing the overall error with each iteration. A generalized

OMP based iterative algorithm discussing the computation

steps for jointly designing the RF and baseband hybrid filters

at Tx and Rx is given in Table II. The set of candidate

beamforming vectors are acquired from different dictionary

sets. In this paper we evaluate the performance of both

the proposed designs over different dictionaries including,

eigen beamforming, discrete Fourier transform (DFT), discrete

Cosine transform (DCT), discrete Hadamard transform (DHT)

and antenna selection beamforming.
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Fig. 2. SMSE Vs Transmitted Power for robust(solid line) and non-robust
design(dashed line), for K = 2 for varying error variance σ2

E
.

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of both the

proposed non-robust and robust multi-user MIMO downlink

mmWave system designs. We compare both the designs based

on different performance parameters such as, SMSE, sum-rate

and bit error rate (BER). The designs are tested for multiple

beamforming techniques. We also compare the performance

of both the proposed systems to a conventional fully-digital

system (Nt = nTx and, Nr = nRx). Throughout our sim-

ulations, we assume {K ∈ 2, 4} UEs in downlink channel

with transceivers equipped with nTx = 16 and nRx = 8
number of Tx and Rx antennas respectively. The RF chain

associated with BS and each UE is respectively N t = 8 and

Nr = 4, hence achieving half of the hardware complexity as

compared to conventional fully-digital system. The channel

assumed is Saleh-Valenzuela channel model with uniform

linear antenna arrays with inter-element spacing as λ/2. The

number of clusters and number of rays are assumed to be

Ncl ∈ {4, 6} and Nray = 5 respectively. The stochastic

errors in CSI are modeled as Gaussian random vector with

zero mean and varying σ2
E ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. BPSK

modulation scheme is assumed for generation of data. All the

simulations parameters have been tested for N = 10000 data

samples. Multiple beamforming techniques are considered for

performance evaluation as discussed in III-C.

We compare the performance for both the proposed designs

in terms of SMSE versus varying transmit power in Fig 2.

SMSE value are obtained for different error variance σ2
E , and

it is observed that the robust design achieves lower SMSE as

compared to non-robust design for all values of σ2
E . Moreover,

with increasing σ2
E , the difference between the robust and

non robust plots increases, with robust system resulting in

lower SMSE with increasing value of σ2
E . Convergence of

the proposed robust iterative algorithm is illustrated in Fig.

3, where rapid convergence in less than five iterations is

observed. We also compare both the proposed designs with

conventional fully-digital systems for BER and sum-rate per-

formance as demonstrated in Fig. 4 and Fig. 5 respectively.

In Fig. 4, it is observed that both the hybrid robust and
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Fig. 4. Average BER Vs Transmitted Power comparing robust(solid line),
non-robust(dashed line) and conventional design(dotted line).

non-robust systems with half complexity achieves equivalent

performances as compared to full-complexity conventional

robust and non-robust systems respectively. The plot (Fig. 4)

also demonstrates the effect of varying number of users in

downlink channel and we observe that BER increases with

increasing number of users due to increasing interference from

other UEs in the channel. Simulations over various dictionaries

has been performed and results are shown in Fig. 5. Eigen

beamforming shows the best result and can achieve the sum-

rate that is equivalent to fully-digital system for both the pro-

posed designs. However, it can be observed that the sum-rate

for non-robust system is considerable less for all dictionaries

as compared to robust system hence, demonstrating the robust

design to be highly resilient to errors in CSI.

V. CONCLUSION

In this paper, we proposed low-complexity non-robust

and robust hybrid transceiver designs for multi-user MIMO

downlink mmWave communication system based on SMSE

criterion by considering the difference in CSI knowledge. The

low-complexity hybrid architecture was achieved by using

the OMP-based sparse signal processing. We compared the

performance of both the proposed systems amongst each

other and to a conventional fully-digital transceiver design.

Simulation results show that both the proposed designs achieve
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Fig. 5. Sum rate Vs Transmitted Power comparing robust, non-robust and
conventional design for dictionaries.

comparable performance with half the hardware complexity as

compared to fully-digital design. However, the robust system

performs better that non-robust system, as it has been designed

by considering the CSI errors and hence is resilient to the chan-

nel imperfections. Performance was evaluated over multiple

dictionaries considered for RF beamforming and it has been

observed that, eigen beamforming shows best performance

over others.
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