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Abstract—In this paper, we consider the design of low-
complexity analog-digital hybrid transceivers for a multi-input
multi-output (MIMO) millimeter wave (mmWave) communica-
tion system operating in a K−user interference channel. Our
objective is to achieve the energy efficiency by minimizing overall
transmit power required for achieving a target mean-square
error (MSE) at the receivers. We propose two transceiver designs
based on the quality of the available channel state information
(CSI). We first present a design that minimizes total transmit
power assuming the availability of perfect channel knowledge.
Later, we extend it to a robust transceiver design by considering
imperfections in CSI. In this case, error in the available CSI
is modeled as Gaussian random variables. The proposed de-
signs achieve reduced hardware and computational complexity
by forming hybrid architecture using sparse signal processing.
Hence, achieving similar MSE with lower energy consumption.
We evaluate the performance of both the proposed schemes
based on various parameters. Furthermore, we demonstrate the
resilience of the robust design in presence of errors in CSI and
performance of both the designs with various dictionaries.

Keywords—mmWave communication, sparse signal processing,
hybrid transceiver, orthogonal matching pursuit, 5G.

I. INTRODUCTION

Millimeter wave (mmWave) communication is expected to

be an inevitable component of the suite of technologies for

next generation cellular systems, harnessing which opens up

availability of abundant spectral resource [1], [2]. The potential

benefits are however accompanied by various challenges such

as increased free space path loss, less significant scatter-

ing, pronounced coverage and blockage holes [3]. Some of

these challenges can be overcome by high-gain electronically

steerable directional antennas that provide high signal-noise-

ratio (SNR) by beamforming or precoding data on large-

scale antenna arrays, making multiple-input multiple-output

(MIMO) a key technique for mmWave systems. Conventional

full-complexity MIMO schemes use one radio frequency (RF)

chain per antenna. However, dedicating a separate RF chain for

each antenna will lead to high power consumption in mmWave

systems. It is thus imperative to reduce the power consumption

by reducing number of RF chains compared to the number of

antenna elements in order to make the system less complex

and amenable to practical implementation.

Hybrid architecture is a promising solution to reduce the

hardware complexity in mmWave systems [4]. Hybrid pro-

cessors processes data in two sequential phases, viz., digital

baseband processing followed by analog beamforming [3].

Signal combining in analog domain achieves the reduction in

number of RF chains. Some recent results point to the effec-

tiveness of such techniques [5], [6]. In this paper, we propose

to develop energy efficient and practically realizable hybrid

transceivers using sparse signal processing technique. Specifi-

cally, we adopt orthogonal matching pursuit (OMP) algorithm

to achieve significant reduction in hardware complexity [7].

Another factor that affects the system performance in general

is the quality of the available channel state information (CSI).

Various factors such as feedback delays, estimation error, pilot

contamination in the case of large MIMO, can introduce errors

in CSI estimation. Systems developed assuming the perfect

knowledge of CSI are likely to suffer performance degradation

in the presence of such CSI errors [8]. Thus in practice, the

systems that are resilient to such errors are highly desirable.

In this paper, we propose two hybrid transceiver designs

with reduced hardware complexity for multi-user interfer-

ence channel. We first introduce a low complexity mmWave

transceiver design that assumes the availability of perfect

channel knowledge. This will be referred to as non-robust

design in rest of the paper. Later, we propose a robust design

by considering the imperfections in the CSI. This design makes

use of suitably modified performance metrics to combat the

effect of errors in available CSI on the system performance.

In each of the proposed designs, we first jointly design full-

digital optimal precoder and receive filters, by minimizing total

transmit power. Resultant optimal filters have high hardware

and computational complexity due to large number of anten-

nas in mmWave systems. However, we partition the overall

processing to digital baseband and analog radio frequency

(RF) processing by using sparse approximation. This parti-

tion makes reduced-complexity implementation possible. The

corresponding optimization problem is not a convex problem

and hence the global solution is not guaranteed. However, we

show that proposed solution converges to an optimal point.

We carry out the performance evaluation of both the schemes

with extensive simulations over various parameter values and

demonstrate the comparison results later in the paper. The rest

of this paper is organized as follows. System and channel

model is described in Section II. The proposed low-complexity

hybrid non-robust and robust transceiver designs are discussed

in Section III. Section IV presents the simulation results.

Finally, Section V concludes this paper.

Notations: Throughout this paper, we use bold-faced lower-



case letters to denote column vectors and bold-faced uppercase

letters to denote matrices. X and X implies that the variable X

corresponds to the baseband and RF block, respectively. tr(·),
E{·}, ‖ · ‖0 and ‖ · ‖F denotes the trace operator, expectation

operator, 0-norm and Frobenius-norm respectively.

II. SYSTEM AND CHANNEL MODEL

A. System Model

We consider a K−user interference channel as shown in

Fig. 1, where transmitters and receivers are equipped with

analog-digital hybrid precoders and combiners, respectively.

Each transmitter transmits NS symbols over nTx antennas

and each receiver is equipped with nRx antennas. The sig-

nal transmitted by the kth transmitter is denoted by the

Ns−dimensional column vector dk. The number of RF chains

associated with each transmitter and receiver are N t and Nr,

respectively, and Ns ≤ N t < nTx and Ns ≤ Nr < nRx. The

N t×Ns matrix Vk denotes the digital baseband precoder and

the Nt×N t matrix Vk denotes the RF beamformer at the kth

transmitter. On the receiver side, the signal vector received by

the kth receiver is passed through a RF beamfomer denoted

by nRx × Nr matrix Rk followed by a baseband combiner

denoted by the Nr×Ns matrix Rk. The output at the kth RF

beamformer is zk, where, zk = R
H

k yk. Let Vo
k and Ro

k denote

the optimal precoder and receive filter in the conventional

MIMO interference channel. Then, we design the hybrid filters

to satisfy the following: Vo
k = VkVk and Ro

k = RH
k R

H

k .

Following the above system model, the estimate of the trans-

mitted data can be given by,

d̂k = RH
k zk. (1)

B. Channel Model

Due to high free-space pathloss and the use of large tightly-

packed antenna at mmWave frequencies, a 2D narrowband

parametric clustered channel model is adopted. We consider

extended Saleh-Valenzuela model [9], in which the channel

matrix Ckj , from jth transmitter to kth receiver can be

characterized as follows,

Ckj=γ

Ncl∑

m=1

Nray∑

n=1

αkj
mnar

(
φr(k)
mn , θr(k)mn

)
at
(
φt(j)
mn , θ

t(j)
mn

)
, (2)

where, Nray is the number of rays in Ncl clusters and, the

normalization factor γ =
√

nTxnRx
NclNray

is such that it satisfies

E
[
||Ckj

2
F||

]
= nTx× nRx. αmn denotes the complex gain of

nth ray in mth cluster and is assumed to be i.i.d. and complex

Gaussian random variables with zero mean and variance σ2
α

∼ N (0, σ2
α). at

(
φ
t(j)
mn , θ

t(j)
mn

)
and ar

(
φ
r(k)
mn , θ

r(k)
mn

)
are the array

response vectors at the transmitter and receiver respectively,

and φ
t(j)
mn , θ

t(j)
mn and φ

r(j)
mn , θ

r(j)
mn are azimuthal and elevation

angle for transmit and receive antennas respectively, where,

a
(
φmn, θmn

)
=

1√
nTx

[
expιm× 2π

λ
d(sin(φ))

]T
. (3)

We assume the transmitters possess only imperfect knowledge

of the channel state, thus, the actual CSI can be modelled as,

C = Ĉ+∆, (4)

Fig. 1. mmWave Hybrid MIMO processor with K user interference channel.

where Ĉ is the estimated CSI available and ∆ ∼ N (0, σ2
E)

denote the corresponding error in the CSI. The additive noise

at the receivers is white Gaussian noise, i.e., nk ∈ C
nRx x 1

with nk ∼ CN (0, σ2
InRx) for k = 1, 2, · · · ,K.

III. LOW-COMPLEXITY HYBRID TRANSCEIVER DESIGNS

In this section, we present the designs of hybrid precoding

matrices Vk and Vk and hybrid receive filter matrices Rk and

Rk for multiuser MIMO interference channel under perfect

and imperfect channel state information. The proposed designs

minimize total transmit power required to achieve a specified

MSE at each receiver. Solving the corresponding optimization

problem, we obtain the optimal full-complexity precoding

and receive filter matrices, Vo
k and Ro

k, respectively. Full-

complexity design is based on the use of one RF chain per

antenna. Subsequently, we obtain the low complexity hybrid

precoders and receive filters from the optimal matrices using

the OMP-based sparse approximation technique.

A. Full-Complexity Precoder and Receive Filter Design

We aim to design a set of optimal transmit precoder and re-

ceive filter matrices {Vo
k,R

o
k},where k = 1...K, to minimize

total transmit power under individual MSE constraint. Based

on (1), the MSE at the kth user is given by,

MSEk = E[‖d̂k − dk‖
2

]

= E

[
tr

(((
RK(Ĉkk + α∆)Vk − I

)
dk

+Rk

K∑

i=1

(Ĉki+α∆)Vidi+Rknk

)((
RK(Ĉkk+α∆)Vk−I

)
dk

+Rk

K∑

i=1

(Ĉki + α∆)Vidi +Rknk

)H
)]

= tr
(
Rk

K∑

i=1

(ĈkiViV
H
i Ĉ

H
ki)R

H
k −(RkĈkkVk+V

H
k Ĉ

H
kkR

H
k )

+σ
2
nRkR

H
k + I

)
+ E

[
tr
(
Rk(

K∑

i=1

(α∆)ViV
H
i (α∆

H))RH
k

)]
. (5)

The above equation is a generalized representation for MSE

such that for α = 0 and α = 1, it represents the MSE for

perfect and erroneousness CSI respectively. In order to further

simplify (5), we use a Lemma in [8], which states that for any



TABLE I

Iterative algorithm computing Vo and Ro for power optimization

1. Initialize n = 0, Vk(0) ∀k ∈ {1, ..K}
2. Update Rk(n+ 1) using Vk(n),

3. Solve for λk:

Vk(λ
−
k
) =

(
I+ λk

∑K
i=1

ĈH
ik
RH

i (n+ 1)Ri(n+ 1)Ĉik

)−1

×
(
λkĈ

H
kk

RH
k
(n+ 1)− α(σ2

E

∑K
i=1 tr(R

H
k
(n+ 1)Rk(n+ 1)))

)

λk(n+ 1) =
[
{λ̃k| such that MSEk = T}

]

+

4. Update Vk(n+ 1) using Rk(n+ 1) and λk(n+ 1) ,

5. Repeat 2,3,4 until convergence.

Non-Robust System : α = 0;

Robust System: α = 1

random matrix X with E{XXH} = σ2I, and matrices U and

Z of appropriate dimensions, the following equality holds:

E[tr(XUXHZ)] = E[tr(XHZXU)]

= σ2tr(U)tr(Z). (6)

Employing above result, we can simplify last term in (5) as,

E

{
tr
( K∑

i=1

Rk(α∆)ViV
H
i (α∆H)RH

k

)}

= α
K∑

i=1

σ2
Etr(ViV

H
i )tr(RH

k RK). (7)

Based on the preceding developments, the sum-MSE for a

K−user interference channel can be expressed as,
K∑

k=1

MSEk = tr
( K∑

k=1

Rk

K∑

i=1

ĈkiViV
H
i ĈH

kiR
H
k

−
K∑

k=1

(RkĈkkVk +VH
k ĈH

kkR
H
k ) +

K∑

k=1

σ2
nRkR

H
k +KI

)

+α

K∑

k=1

K∑

i=1

σ2
Etr(ViV

H
i )tr(RH

k Rk). (8)

We design optimal transceivers by minimizing the total trans-

mit power under constraints on MSE at each user. Hence, the

optimization problem can be mathematically expressed as,

min
{Vk},{Rk}

K∑

k=1

tr(VH
k Vk) (9)

subject to: MSEk ≤ Tk, ∀k ∈ {1..K},
where MSEk is given as in equation (8) and Tk is the upper

bound on MSE for the kth user. This optimization problem

can be solved using the Karush-Kuhn-Tucker conditions to be

satisfied by the optimal solution. The Langrangian associated

with (9) is given by,

L(Vk, Rk, λk) =

K∑

k=1

tr(VH
k Vk) +

K∑

k=1

λk[MSEk − Tk],

(10)

where λk, k = 1, 2, · · · ,K are Lagrangian variables.

It can be observed that the formulated problem is not jointly

convex in the optimization variables, but it is convex in {Vk}
for fixed values of {Rk} and vice verse. Based on this, we

obtain a solution by coordinate descent method, wherein the

minimization is performed w.r.t. one variable while keeping

other variables fixed. Thus, the optimal values Vo and Ro are

obtained iteratively. Solving (9) based on different available

CSI, two corresponding transceiver designs are developed and

the details are discussed in subsequent subsections.

1) Non-Robust Design: In this section, we assume that

the CSI is globally and perfectly available. We jointly design

optimal filters, by considering expected values of the optimiza-

tion objective and constraints. For the design of non-robust

transceiver, we set α = 0 in (8). Solving (10), the Lagrangian

associated with non-robust transceiver design can be given as,

L =

K∑

k=1

tr(VkV
H
k ) +

K∑

k=1

λk

{
tr
[
Rk(

K∑

i=1

ĈkiViV
H
i ĈH

ki)R
H
k

−(RkĈkkVk +VH
k ĈH

kkR
H
k ) + I+ σ2

nRkR
H
k

]}
. (11)

Differentiating it w.r.t. V∗
k, and R∗

k respectively and equating

it to 0, we obtain the corresponding full-complexity precoding

and receive filter matrices as follows,

∂L

∂V∗
k

= 0, ∀k ∈ (1...K). (12)

Thus, the precoding matrix for a given Rk can be given by,

Vo
k = (I+ λk

K∑

i=1

ĈH
ikR

H
i RiĈik)

−1ĈH
kkR

H
k . (13)

And,
∂L

∂R∗
k

= 0, ∀k ∈ (1...K). (14)

Hence, the receive filter matrix for given Vk can be given as,

Ro
k = VH

k ĈH
kk(

K∑

i=1

ĈkiViV
H
i ĈH

ki + σ2
nI)

−1. (15)

2) Robust Design: The channel model considered for this

design is as given in (4). In other words, we design the system

by considering the imperfections in the available channel

knowledge. Following the similar approach as in the previous

subsection dealing with the non-robust transceiver design, we

obtain the solutions for robust optimal precoding and receive

filters. In order to make the performance immune to errors

in the available CSI, we consider the expected value of the

performance matrix in optimization problem. Formulating and

solving the new optimization problem for the robust design,

expressions for full-complexity optimal Vo
k and Ro

k are as

given below,

Vo
k = (I+ λk

K∑

i=1

ĈH
ikR

H
i RiĈik)

−1

(ĈH
kkR

H
k − σ2

E

K∑

i=1

tr(RH
k Rk)), (16)

Ro
k = (VH

k ĈH
kk−σ2

E

K∑

i=1

ViV
H
i )

(
K∑

i=1

ĈkiViV
H
i ĈH

ki + σ2
nI)

−1. (17)

The generalized iterative algorithm for both the designs ob-

tained in subsections 1 and 2 are given in Table-I. Since the

objective function i.e., total transmit power, is non-increasing

with each iteration, and it is lower-bounded, the objective

function tends to limit as the number of iteration increases.



B. Hybrid OMP-Based Precoder and Receive Filter Design

Orthogonal Matching Pursuit (OMP) for sparse approxima-

tion is a greedy approach that iteratively updates the initial

zero estimates by minimizing the approximation cost w.r.t. all

the currently selected coefficients. OMP is a well known signal

processing algorithm, and has been extensively studied in liter-

ature for various applications [10]–[12]. As described earlier,

it leads to reduced complexity implementation for mmWave

systems. We use the OMP sparse approximation technique

in order to decompose the optimal full-complexity matrices

{Vo
k} and {Ro

k}, for non-robust design in (13), (15) and for

robust design in (16), (17), into their corresponding baseband

and RF processing matrices. The baseband and RF matrices for

both the designs are realized by decomposing optimal solution

as Vo
k = VkVk and Ro

k = RH
k R

H

k . A generalized detailed

OMP based iterative algorithm discussing the computation

steps for jointly designing the RF and baseband hybrid filters

at Tx and Rx is given in Table.II. The details of this design

are discussed in following subsections.

1) Design of Hybrid Receive Filters in MIMO Systems: In

this section, we seek to design hybrid combiners Rk, Rk that

minimizes residue between optimal and decomposed matrices.

Let, Γyk
= E[yky

H
k ] and Γ

ykd̂k
= E[ykd̂k], where, d̂k =

RoHyk. Thus,

Γ
ykd̂k

= E[yky
H
k Ro], (18)

Γ
ykd̂k

= Γyk
Ro. (19)

Hence, for the receiver design problem, the optimal solution in

(15) or (17) by considering the respective channel knowledge

can be rewritten as,

Ro
k = Γ−1

yk
Γ
ykd̂k

, (20)

Similarly, the baseband receive filter matrix can be given by,

Ro
k = Γ−1

zk
Γ
zkd̂k

= (R
H

k Γyk
Rk)

−1
R

H

k Γ
ykd̂k

, (21)

where Γzk
= E[zky

H
k ] and Γ

zkd̂k
= E[zkd̂

H
k ]. The OMP

sparse problem for receiver can be formulated as,

R
o

k = argmin
Rk

E‖dk −Ro
k
H
Rkyk‖

2
, (22)

Equation (22) is the standard form to which OMP algorithm

can be applied, which can be rewritten as,

R
o

k = argmin
R

o

k

‖Γ
1

2

yk
Ro

k − Γ
1

2

yk
RkR

o
k‖

2

F . (23)

Introducing a dictionary SBF , where basically dictionary

constitutes a set of candidate beamforming vectors which can

be used during RF design, the optimization problem can be

rephrased as,

R̃
o

k=argmin
R̃k

‖Γ
1

2

yk
Ro

k − Γ
1

2

yk
SBF R̃

o

k‖
2

F , (24)

s.t. ‖diag (R̃
o

kR̃
o

k

H
)‖0 = Nr.

Thus in (24), Γ
1

2

yk
Ro

k are approximated by the columns of

Γ
1

2

yk
SBF with non zero elements of R̃

o

k as weights for the

linear combination.

2) Design of Hybrid Precoders in MIMO Systems: In order

to design hybrid precoder matrices, we consider the equivalent

TABLE II

OMP-based iterative algorithm for robust MSE optimization

Require Po
k
,Φ,SBF

1: Qk = [ ]
2: A0 = Po

k
3: for i = 1 to N do
4: Ψi−1 = (ΦSBF )H(ΦAi−1)
5: l = arg maxm=1...M (Ψi−1Ψ

H
i−1

)m,m

6: Qk = [Qk|Φ(:, k)]

7: Q
k
= (Q

H

k Qk)
−1

Q
H

k Po
k

8: Ai =
Po

k−QkQk

‖Po
k
−QkQk

‖
F

9: end for

10: Q =
√
Ns

Q

‖QQH‖
F

, when ζ = 1

11: return Q,Q

Precoder: N = Nt,P
o = Vo,Φ = Γ

1

2

yr
k
, ζ = 1,

Q = V, and Q = V

Receive filter: N = Nr,P
o = RoH ,Φ = Γ

1

2
yk

, ζ = 0, ,

Q = R, and Q = R

system for modeling reverse MIMO interference channel as

shown in Fig.2. Considering the reverse system, optimal

precoders of forward system can be obtained from optimal

receive filters of the reverse system. Thus for any kth user in

reverse system, the transceivers are considered to have Rk and

Vk as their precoding and receive filter units respectively. The

interference channel is modeled as CH
ik from ith transmitter to

kth receiver for any i 6= k and nr
k is considered as the additive

white Gaussian noise at the receiver nk ∈ C
nTx x 1. Thus the

received signal for the reverse system yr
k can be given by,

yr
k=CH

kkRkd
r
k +

K∑

i6=k

CH
ikRid

r
k + nr

k. (25)

And the signal estimate for reverse channel can be given by,

d̂r
k=VH

k yr
k. (26)

Thus, similar to the hybrid receive filters design discussed in

previous subsection, the optimization problem for V
o

k can be

written as,

V
o

k=argmin
Vk

‖Γ
1

2

yr
k
Vo

k − Γ
1

2

yr
k
VkV

o
k‖

2

F
, (27)

where, Γyr
k
= E[yr

ky
r
k
H ], Γ

yr
k
d̂k

= E[yr
kd̂

H
k ], and the base-

band receive filter matrix Vo
k = (VkΓyr

k
Vk)

−1
V

H

k Γ
yr
k
d̂r

k

.

Hence, the OMP sparse problem for hybrid precoders can be

rewritten as,

V
o

k = argmin
Ṽk

‖Γ
1

2

yr
k
Vo

k − Γ
1

2

yr
k
SBF Ṽ

o
k‖

2

F
, (28)

s.t. ‖diag (Ṽ
o

kṼ
o

k

H
)‖0 = N t and ‖SBF Ṽk‖

2

F = ‖Vo
k‖2F .

where, the column of V k are selected from set of candidate

beamformers SBF .

To solve this optimization problem, the RF beamforming

matrix is selected from the set of candidate vectors SBF . At

each iteration, the effective residue is updated from formulated

beamformer matrix, and corresponding baseband filter is ob-

tained by least square solution. Hence, minimizing the overall

error with each iteration as given in Table.II.



Fig. 2. Equivalent system for modeling reverse interference channel.

The set of candidate beamforming vectors are acquired

from different dictionary sets. We compare the performance

for both the proposed designs for different linear dictionaries

as they consists of orthogonal candidate vectors and hence

practically easy to implement. Performance has been evaluated

for both non-robust and robust designs for eigen beamform-

ing, discrete Fourier transform(DFT), discrete Cosine trans-

form(DCT), discrete Hadamard transform(DHT) and antenna

selection beamforming linear dictionaries and is illustrated in

simulation results. Eigen beamforming is most complex of all

above mentioned dictionaries and consists of eigenvectors of

Γyk
. However, it offers the perfect decomposition of optimal

full-complexity matrices into hybrid baseband and RF units

which is also proved in lemma-2 in [13], and hence offers

a very good performance. Whereas, DFT, DCT and DHT

dictionaries can be designed by using the columns of Fourier

transform, Cosine transform and Hadamard transform matrices

respectively. However, in case of implementation complexity,

antenna selection beamforming method is considered to be

simplest of all, as it can be implemented by using a switching

circuit, where the dictionary consisting of columns of InRx

can be considered.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the performance of both

the proposed non-robust and robust mmWave system designs.

We evaluate and compare the performance in terms of total

transmit power and sum-rate for both the designs. Sum-rate for

multi-user MIMO system is evaluated as, ρ =
∑K

k=1 log2 |I+
SINRk| where SINRk =

RkCkVkV
H
k CH

k RH
k

RkβkR
H
k

and βk = σ2
nI+∑k

l=1 CklVlV
H
l CH

kl−CkkVkV
H
k CH

kk. The designs are tested

for multiple beamforming techniques. Convergence of both the

algorithm is also observed.

A. Simulation Parameters

The simulation environment is assumed to have K = 4
number of users, where data is sequentially processed in

parallel Ns = 2 transmission streams. We assume nTx =
nRx = 20 antennas at both transmitter and receiver side with

N t = Nr = 5 RF chains, achieving the reduced complexity

by factor of 4 as compared to fully complex MIMO system.

The channel assumed is Saleh-Valenzuela channel model with

uniform linear antenna arrays with inter-element spacing as

λ/2. The number of clusters and number of rays are assumed

to be Ncl ∈ {4, 6} and Nray = 5 respectively. The stochastic

errors in CSI are modeled as Gaussian random vector with
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Fig. 4. Comparison of sum-rate performance Vs MSE for robust(solid line)
and non-robust(dashed line).

zero mean and varying σ2
E ∈ {0.5, 1, 1.5}. BPSK modulation

scheme is assumed for generation of data. Multiple beamform-

ing techniques are considered for performance evaluation as

discussed in III-B.

B. Simulation Results

In Fig. 3 and 4, we compare the performance of proposed

designs in terms of total transmit power and sum-rate respec-

tively over a range of MSE for varying error variance σ2
E . As

seen in Fig. 3, power requirement decreases with increasing

MSE. It is also observed that robust scheme require lesser

transmit power as compared to non-robust scheme. However

as σ2
E increases, the difference between power driven by both

the schemes increases. From Fig. 4, sum-rate is higher for

robust system as compared to non-robust design for all error

variance, even though it reduces with increasing MSE. Hence

from above results, it is observed that the robust scheme

performs better than the other. The robust design is observed

to perform better as its optimization problem already considers
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Fig. 5. Convergence behavior of non-robust Vs robust design for K=4.

the channel impairments hence obtaining better solutions and

combating the effect of errors in available CSI knowledge

as compared to non-robust scheme, where channel impair-

ments are neglected during the design. We also observe the

convergence of the proposed iterative algorithm and compare

the difference in convergence curve for robust and non-robust

systems that is plotted against varying error variance in Fig.

5. It is observed that both the algorithms converge in around

15 iterations with robust algorithm converging slightly faster

than non-robust design. Simulations for various dictionaries

for both non-robust and robust schemes has been performed

for range of MSE with given error variance, σ2
E = 0.1

and comparison results are shown in the Fig. 6. Again, it

is observed that, the eigen dictionary outperforms over other

dictionaries in both the cases due to its perfect decomposition

into hybrid matrices from optimal solutions. Other dictionaries

show good performance over both the designs with slightly

better results for robust design. But, considering their simple

implementation they can be chosen for applications having

non-critical criterion.

V. CONCLUSION

In this paper, we proposed two low-complexity analog-

digital hybrid mmWave communication system designs, (non-

robust and robust), where, complexity for both the designs

was reduced by a factor of 4 as compared to full-complexity

traditional MIMO system. We proposed two hybrid transceiver

designs for K-user interference channel assuming the avail-

ability of different CSI knowledge at mmWave frequencies.

The robust design demonstrates the resilience to erroneous

CSI as compared to non-robust design. The transceivers were

designed by formulating and solving total transmit power

minimizing optimization problem constrained on sum-MSE

for both the schemes. Convergence of the proposed algorithm

to a limit was demonstrated. We adopted OMP-based sparse

approximation technique to obtain the RF-baseband decompo-

sition of the optimal transmit and receiver processing matrices.

Performance for both the schemes was compared for different

system parameter values. We also tested the proposed design
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Fig. 6. Transmit power and sum-rate for robust(solid line) and non-robust
design(dashed line) Vs MSE for different dictionaries.

for different RF processing methods for both the proposed

transceiver designs. Simulation results show that the proposed

robust hybrid system outperforms the non-robust hybrid design

in the presence of errors in the available CSI.
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